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A nematic liquid crystal in contact with a grating surface possessing an alternating stripe pattern of locally
homeotropic and planar anchoring is studied within the Frank-Oseen model. The combination of both chemical
and geometrical surface pattern leads to rich phase diagrams, involving a homeotropic, a planar, and a tilted
nematic texture. The effect of the groove depth and the anchoring strengths on the location and the order of
phase transitions between different nematic textures is studied. A zenithally bistable nematic device is inves-
tigated by confining a nematic liquid crystal between the patterned grating surface and a flat substrate with
strong homeotropic anchoring.
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I. INTRODUCTION

The contact of nematic liquid crystals �NLCs� with struc-
tured solid substrates offers the possibility to manipulate the
orientation of the adjacent liquid crystal molecules in a con-
trolled way. For example, substrates with topographic struc-
tures influence anchoring of liquid crystal molecules and in-
duce elastic distortions and flexoelectric polarizations within
a contacting NLC. Alignment of liquid crystal molecules can
also be governed by the pattern of boundary lines between
different regions on a flat substrate and the NLC elasticity.
Adjacent regions of planar and homeotropic anchoring
within a single substrate have been created, for example, by
microcontact printed polar and apolar thiols, respectively, on
an obliquely evaporated ultrathin gold layer. Whereas many
experimental and theoretical studies have focused on the un-
derstanding of the interactions and phase behavior of NLCs
in contact with either geometrically structured substrates
�see, e.g., �1–13�� or chemically patterned substrates �see,
e.g., �15–29��, NLCs near geometrically structured and
chemically patterned substrates have not been investigated
yet to our knowledge. In view of the rich behavior of NLCs
even on geometrically structured or chemically patterned
substrates, a combination of both surface treatments may
open additional possibilities for an improved performance of
NLC cells. Here we study a NLC in contact with a grating
surface possessing an alternating stripe pattern of locally ho-
meotropic and planar anchoring within the Frank-Oseen
model �30,31�, whereby the anchoring energy function is
given by the Rapini-Papoular expression �32�. Taking into
account both chemical and geometrical surface patterns is
particularly interesting because of the possibility of bistable
anchoring, which is important for low power consumption
liquid crystal displays. In bistable nematic devices there are
two stable nematic director orientations which have substan-
tially different tilt angles. The zenithally bistable nematic
devices that have been studied recently consist of a NLC
confined between a grating surface and a flat surface
�11–13,33�. These surfaces are coated with a homeotropic

agent. While such a device is characterized by both a high
shock stability and a low power consumption, the deep grat-
ing structure leads to a reduction of the contrast of the dis-
play �14�. On the basis of our calculations we expect that an
additional chemical surface pattern allows one to use rather a
shallow grating surface instead of a deep one.

The structure of the paper is as follows. In Sec. II two
models of a patterned grating surface are introduced and
phase diagrams of a NLC in contact with the model surfaces
are discussed. In particular we show how phase transitions
between different nematic textures vary with the groove
depth and the anchoring strengths. The phase behavior and
director profile of a NLC confined between a patterned grat-
ing surface and a flat surface subject to strong homeotropic
anchoring are investigated in Sec. III. Our results are sum-
marized in Sec. IV.

II. NLC IN CONTACT WITH A CHEMICALLY AND
GEOMETRICALLY PATTERNED SUBSTRATE

We first consider a semi-infinite system consisting of a
NLC in contact with a single, patterned grating surface. Two
models of the surface grating are investigated. In model A, a
sinusoidal grating surface is assumed. This leads to the
Euler-Lagrange equation for a two-dimensional director
field, which is then solved numerically. In model B, we
choose a special form of the surface grating which, albeit not
given explicitly by a simple formula, has the great advantage
that the problem can be reformulated in terms of a semi-
infinite system with a flat patterned substrate, and for the
latter we have developed previously an efficient method of
finding the equilibrium director field �21�.

A. Model A: Sinusoidal grating surface

Let us consider a NLC in contact with a single grating
surface and assume that the surface profile z0�x� is given by
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z0�x� = A sin�qx� , �1�

where A is the groove depth and p=2� /q is the period. Such
a surface structure can be fabricated, for instance, using an
interferometric exposure technique �see Ref. �12� and refer-
ences therein�. As Fig. 1 illustrates, the surface exhibits a
pattern consisting of alternating stripes of locally homeotro-
pic and homogeneous planar anchoring. The system is trans-
lationally invariant in the y direction. We focus on shallow
grooves for which the nematic director n̂ can be constrained
to the plane perpendicular to the direction of the surface
grooves. The orientation of n̂ is therefore given solely by the
polar angle ��x ,z� �see Fig. 1�. The free energy functional of
the NLC reads

F��� = Fd��� + Fs��0�

=
K

2
�

0

p

dx�
z0�x�

�

dz����x,z��2

+
1

2
�

0

p

dx w�x�
�− sin��0�x��z0��x� + cos��0�x���2

�1 + �z0��x��2
,

�2�

where �0�x�=�(x ,z0�x�). The first term on the right hand side
of Eq. �2� is the distortion free energy �Fd� �30,31� within the
one-elastic-constant approximation, and the second term is
the surface free energy �Fs� adopting the Rapini-Papoular
form �32�. The anchoring strength is specified by a periodic
step function: w�x�=−wH and wP for values of x on the ho-
meotropic and planar anchoring stripes, respectively �see
Fig. 1�. Equation �2� completely specifies the free energy
functional for the system under consideration. Minimization
of F��� with respect to ��x ,z� leads to the Laplace equation
with the following boundary condition at z=z0�x�:

2K lim
z→z0�x�

�− z0��x��x + �z���x,z�

= −
w�x�

�1 + �z0��x��2
„�1 − �z0��x��2�sin�2�0�x��

+ 2z0��x�cos�2�0�x��… , �3�

and the second boundary condition limz→��z��x ,z�=0. We
solve this equation numerically on a sufficiently fine two-
dimensional �x ,z� grid.

The periodic surface induces a certain anchoring direction
�i.e., the orientation of n̂ far from the surface� which we call
the effective anchoring direction �a

�ef f�, to distinguish it from
the local anchoring directions of different regions forming
the surface pattern. In the absence of external fields or com-
peting surfaces n̂ adopts the orientation �a

�ef f� when the dis-
tance from the surface is large compared to the periodicity of
the surface pattern. As we know �21�, in the case of a flat
surface �z0��x�=0� uniform nematic textures can exist, ho-
meotropic ���x ,z�=0� and planar ���x ,z�=� /2�, whereas it
is clear from Eq. �3� that no uniform texture ���x ,z�
=const� is possible if z0��x��0. Nevertheless, the homeotro-
pic �H� texture, defined by �a

�ef f�=0, or planar �P� texture,
defined by �a

�ef f�=� /2, can still exist even though ��x ,z�
�const close to the surface. In other words, the presence of
surface grating does not necessarily imply a tilted �T� nem-
atic texture, corresponding to 0��a

�ef f��� /2. The existence
of solutions corresponding to the H and P textures for arbi-
trary groove depth follows from the assumed symmetry of
the surface profile and anchoring strength function: z0�x�
=z0�p /2−x� and w�x�=w�p /2−x�. Since Eq. �3� is invariant
with respect to the transformation x→p /2−x if ��p /2
−x ,z�=n�−��x ,z�, where n=0 or 1, we have �a

�ef f�=0 for the
antisymmetric solution �n=0� and �a

�ef f�=� /2, for n=1. Note
that the above argumentation holds only if the functions z0�x�
and w�x� exhibit the same symmetry, although even in this
case the tilted texture can be more stable than the H texture
or P texture. If z0�x� and w�x� are not in phase only the tilted
texture is possible.

B. Model B: Special form of surface grating

Here we consider the surface profile z0�x� defined in an
implicit form by

z0�x� = A sin�qx�exp�− qz0�x�� . �4�

It can also be expressed explicitly as

z0�x� = q−1W0„Aq sin�qx�… , �5�

where W0��� is the principal branch of the Lambert W func-
tion W��� �35�. For small values of Aq, z0�x� obtained from
Eq. �5� is very close to the sinusoidal grating given by Eq.
�1�. An example of z0�x� for A / p=0.03 is shown in Fig. 2
together with the sinusoidal grating surface used in model A.
For both models, the minima and maxima of z0�x� occur at
xmin= �n−0.25�p and xmax= �n+0.25�p, respectively, where
n=0, ±1, ±2,…, but for model B	z0�xmin�	� 	z0�xmax�	. Since

FIG. 1. The system under consideration consists of a nematic
liquid crystal �NLC� in contact with a grating surface with an alter-
nating stripe pattern of locally homeotropic anchoring �white bars�
and homogeneous planar anchoring �black bars�. The stripes are
orientated along the y axis perpendicular to the plane of the figure.
The projection of the widths of the stripes onto the x axis and the
anchoring strengths are designated as pH= p /4, pP= p /4 and wH,
wP, respectively, and the midlines of the planar anchoring stripes
are located at x=np /2 with n=0, ±1, ±2,…; � is the period of the
chemical pattern which is half the period of the surface grating p.
The tilt of the nematic director with respect to the z axis is denoted
by ��x ,z�.
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W��� has a second-order branch point at �=−e−1 correspond-
ing to W0=−1 �36� our considerations are limited to groove
depths smaller than Ac / p= �2�e�−1
0.06; for A→Ac we
have z0��xmin�→�.

Then we apply the following conformal mapping:

t = x + A cos�qx�exp�− qz� , �6�

u = z − A sin�qx�exp�− qz� �7�

to express � as a function of �t ,u�. The condition z=z0�x�
corresponds to u=0 in Eq. �7�; thus, the distortion free en-
ergy expressed in terms of the new variables has exactly the
same form as for the flat substrate �cf. Eq. �2��, i.e.,

Fd��� =
K

2
�

0

p

dt�
0

�

du���t��t,u��2 + ��u��t,u��2� . �8�

For the surface free energy we have

Fs��0� =
1

2
�

0

p

dt
w�x��− sin��0�t��z0��x� + cos��0�t���2

�1 − qz0�x���1 + �z0��x��2�3/2 ,

�9�

where �0�t�=��t ,u=0�, and x=x�t� is obtained from Eqs. �6�
and �7� for u=0.

By comparing Eq. �2� with Eqs. �8� and �9� we see that
due to the conformal mapping the semi-infinite system with
the rough patterned surface has been mapped onto the semi-
infinite system with a flat patterned surface and a modified
form of the surface free energy. The Green’s function method
can now be used to express ��t ,u� that satisfies the Laplace
equation in terms of the boundary function �0�t�, which al-
lows us to treat F as a functional of �0 �21�. Thus, instead of
solving the Laplace equation with suitable boundary condi-
tions �see Eq. �3�� in the two-dimensional xz plane we mini-
mize F��0� numerically on a one-dimensional grid of vari-
able t.

C. Phase diagram

Figure 3 displays the phase diagram constructed as a
function of the groove depth A and the homeotropic anchor-
ing strength wH, for three values of the planar anchoring
strength wP. The textures P, T, and H are separated by the

lines of phase transitions which we refer to as the P-T, T-H,
and P-H transition, respectively. Both model A and B predict
that the P-T transition is always continuous, whereas the T-H
transition can be either first or second order, depending on
the ratio A / p. We note, however, that the direct first-order
P-H transition, which occurs when the grooves are suffi-
ciently deep, follows only from model A.

In the limit of small wH the planar texture is stable. When
wH increases, and the grooves are shallow, the second-order
P-T transition occurs. Our calculations show that for a fixed
value of wP the location of this transition is rather indepen-
dent of the groove depth, and when wP increases it moves
toward larger values of wH. For deeper grooves, the line of
the continuous P-T transition terminates in a critical end
point on the first-order T-H/P-H transition line. In the case of
a flat surface �A=0�, the T-H transition is always continuous
and can exist only for pwP /K�9. If pwP /K�9 the H tex-
ture does not exist even for large values of wH. For grating
surfaces, the T-H transition changes from the second to first
order when the groove depth increases. The change occurs at
the tricritical point whose position shifts to higher values of
A upon decreasing wP.

We emphasize that in our model of the NLC in contact
with a chemically patterned but flat substrate �A=0� the

FIG. 2. Comparison of the surface profiles given by Eq. �1�
�solid line� and Eq. �5� �dashed line� for A / p=0.03.

FIG. 3. Phase diagram of a NLC in contact with a single sinu-
soidal grating surface �model A, see Eq. �1� and Fig. 1� with alter-
nating stripe pattern of locally planar and homeotropic anchoring as
a function of groove depth A and the strength of homeotropic an-
choring wH for three values of the strength of planar anchoring wP.
The solid and the dashed lines denote first- and second-order tran-
sitions, respectively, between planar �P�, tilted �T�, and homeotropic
�H� nematic textures. The solid and open circles mark tricritical and
critical end points, respectively. For comparison, the results ob-
tained from model B �see Eq. �4�� are shown with the same line
code, but for A�0.057p.
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phase transitions between the P or H texture and the T tex-
ture are always continuous, and there is no direct transition
between the H and P textures. On the other hand, we observe
a first-order P-H transition for a chemically uniform sinu-
soidal surface but for rather deep grooves �A�0.25 p�, simi-
larly to the results obtained for asymmetric surface grating
structures �7�. However, as is apparent from Fig. 3, a com-
bination of both chemical and geometrical surface patterns
can lead to the first-order H-T transition, and also reduce the
value of A / p above which the H-P transition can be found.
The repercussions of this result on possible bistable nematic
devices are discussed in Sec. III.

Note that since the nematic texture induced by a periodic
substrate is characterized by one of the effective anchoring
directions �a

�ef f�=0, �a
�ef f�=� /2, or 0��a

�ef f��� /2, the ob-
served phase transitions can be regarded as anchoring tran-
sitions. At a distance large compared to the periodicity of the
surface structure, the surface can also be characterized by the
effective anchoring strength w�ef f�. It has been shown �34�
that in the case of a flat, patterned substrate w�ef f� vanishes at
the second order �anchoring� transition, and the derivative of
w�ef f� with respect to either wH or wP is discontinuous; this
conclusion should not change when the surface is rough. In
the vicinity of a first-order H-T transition, however, w�ef f�

does not vanish but we expect that the derivative of w�ef f� is
discontinuous at the transition. We note also that the effective
anchoring strength related to a metastable texture �H or T�
goes to zero in the limit of metastability of the corresponding
texture.

In Fig. 3 we have also compared the predictions of mod-
els A and B. We observe a good agreement for small values
of A / p, whereas for deeper grooves some deviations appear.
This reflects the fact that the difference between the grating
profiles defined by Eqs. �1� and �4� becomes more pro-
nounced with increasing groove depth. Since the application
of model B is limited to rather small values of A / p, for the
reasons already discussed, this model is unable to describe
the first-order transition between the homeotropic and planar
textures. However, the advantage of model B is that the pre-
cise determination of phase diagrams for small ratios A / p
becomes feasible, allowing one to study various aspects of
the phase diagrams in more detail and with considerably less
computational effort than within model A. Thus, to obtain
the overall picture of the phase transitions studied we have
used information from both models.

In Fig. 4, we present a sequence of phase diagrams in the
�pwH /K , pwP /K� plane, for three values of the groove depth:
�a� A�A0, �b� A=A0, and �c� A�A0, where A0 / p
0.075. In
all diagrams the P-T transition is continuous. In case �a�,
there is a tricritical point on the H-T transition line. For A
→0 its position tends to the infinite value of wH �see Fig. 5�,
which is consistent with the flat substrate case. Upon increas-
ing A the tricritical point moves toward �pwH /K=0,
pwP /K=0� and eventually, at A=A0 �case �b��, it reaches the
origin, and the H-T transition becomes first order every-
where. In case �c�, the continuous P-T transition line does not
extend to the origin, as in cases �a� and �b�, but terminates at
the first-order transition line, which for A�A0 consists of
two pieces: the H-T and P-H lines. Note that when A passes
A0 the tricritical point is replaced by the critical end point or
vice versa.

To better visualize the relation between phase diagrams
presented in Figs. 3 and 4, a schematic three-dimen-
sional phase diagram in the space spanned by
�pwP /K , pwH /K ,A / p� is also shown �see Fig. 5�. The two-
dimensional plots can be deduced from Fig. 5 by making
intersections parallel to the plane �A / p , pwH /K� or
�pwH /K , pwP /K�.

Finally we note that one can also consider the situation
when homeotropic stripes are on the sides and planar stripes
are on the hills �and in the pits� of the surface profile �see
Fig. 1�. In such a situation, the H-T transition line can be
easily deduced from the P-T transition line of the above-
discussed case by interchanging wH with wP and pH with pP;
the same holds for the line of the P-T phase transition.

III. ZENITHALLY BISTABLE NEMATIC DEVICE

We now turn our attention to a NLC confined between a
chemically patterned sinusoidal surface �which corresponds
to model A� and a flat substrate with strong homeotropic
anchoring ��x ,D�=0, where D is the thickness of the cell. In
the following calculations we keep D fixed, but vary both the
local anchoring strengths �wP and wH� and the groove depth
A. Note that in such a way we change the strength of effec-
tive anchoring on the grating substrate. The numerical solu-
tion of the Euler-Lagrange equation demonstrates the exis-
tence of two �stable or metastable� nematic director
configurations, namely, the homeotropic texture, where the

FIG. 4. Phase diagram in the �pwH /K , pwP /K� plane for �a�
A�A0, �b� A=A0
0.075p, and �c� A�A0. The meaning of sym-
bols and lines is the same as in Fig. 3. �a� follows from the calcu-
lations based on model B for A / p=0.02. In the case of flat �A=0�
chemically patterned substrate �not shown here� both phase transi-
tions are continuous everywhere �the tricritical point on the H-T
line escapes to ��. �b� and �c� correspond to model A but they are
only schematic. At A=A0 the tricritical point and the critical end
point replace each other.
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director field is almost uniform and perpendicular to the flat
surface, and the hybrid aligned nematic �HAN� texture,
where the director field varies from homeotropic to nearly
planar orientation through the cell �cf. Fig. 7 below�. We
have not found any other stable or metastable texture. In
particular, the planar texture, which was observed in a semi-
infinite case, cannot exist because of the strong homeotropic
anchoring on the flat substrate.

Figure 6 displays the phase diagram plotted as a function
of the groove depth A and the homeotropic anchoring
strength wH for two values of the planar anchoring strength
wP and for a fixed cell thickness D. For weak homeotropic
anchoring the HAN texture is stable provided the groove
depth is smaller than Aupp. For deeper grooves with A
�Aupp no HAN texture is found because distortions of the
director field are too costly in the presence of the dominating
homeotropic anchoring. Upon increasing the groove depth
the HAN-H transition changes from second to first order at
the tricritical point. Notice that the homeotropic texture can
also be stable when the grating substrate induces the tilted
nematic director �compare Figs. 3 and 6�. This is related to
the fact that the effective anchoring energy function of the
grating substrate cannot be approximated by the Rapini-
Papoular formula �34�.

The tilt angle ��x ,z� in the middle of the planar stripe
�x=0� is shown in Fig. 7 as a function of z for the coexisting
H and HAN textures. The nematic director is almost parallel
to the z axis in the H texture �for z�0.6p�, while it changes
smoothly from ��0,z=D�=0 to ��0,z=0��� /2 in the HAN
texture. In the latter case ��0,z� decreases roughly linearly as

the distance from the flat surface increases. Moreover, the
numerical calculations exhibit that the nematic director field
is rather independent of x except for a thin surface layer �of
width 
p / �2��� at the grating surface.

Finally, we emphasize that the groove depths for which
zenithal bistability is found within the present model are con-
siderably smaller than those considered theoretically �A
=0.8p� �11,13� and used experimentally �A=0.35p� �12� for
a NLC confined between a pure geometrically patterned sur-
face and a flat substrate �11,13�. The calculated value of the
average tilt of the nematic director just above the grating
surface in the HAN texture is comparable to the one obtained
in the case of the deeper grooves �11,13�.

FIG. 5. Three-dimensional phase diagram in the
�pwP /K , pwH /K ,A / p� space. The meaning of symbols and lines is
the same as in Fig. 3. The solid and dashed lines correspond to
intersections with planes A=const, and the gray area corresponds to
the surface of the first-order transitions. Note the evolution of the
tricritical point and the critical end point when A / p changes.

FIG. 6. Phase diagram of a NLC confined between a patterned
sinusoidal grating surface �see Fig. 1� and a flat surface with strong
homeotropic anchoring as a function of groove depth A and the
strength of homeotropic anchoring wH for two values of the strength
of planar anchoring wP. The solid and dashed lines denote first- and
second-order transitions, respectively, between a homeotropic �H�
and hybrid aligned nematic �HAN� texture. The solid circles mark
tricritical points. The width of the cell is D / p=2.

FIG. 7. The tilt of the nematic director ��x=0,z� with respect to
the z axis for a NLC confined between the patterned sinusoidal
grating surface shown in Fig. 1 and a flat surface with strong ho-
meotropic anchoring. The dashed and the solid lines represent the
profile for the coexisting H and HAN textures for the planar anchor-
ing strength pwP /K=2.45 and groove depth A / p=0.075; see also
the schematic nematic director profiles on the right side bar. The flat
surface is located at z=D=2p while the grating surface is at z0�x
=0�=0 �see Fig. 1�. The location of the hills of the grating surface
is marked by the dotted line.
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IV. SUMMARY

We have applied the Frank-Oseen model together with the
Rapini-Papoular surface free energy to a NLC in contact
with a single grating surface possessing an alternating stripe
pattern of locally homeotropic and planar anchoring �Fig. 1�
or confined between the patterned grating surface and a flat
substrate. Phase diagrams and nematic director profiles are
determined numerically with the following main results.

�1� A homeotropic, a planar, and a tilted nematic texture
have been found for the NLC in contact with a single
patterned grating surface �Figs. 3–5�. Both second- and
first-order transitions between the tilted texture and the ho-
meotropic or planar texture are possible. Furthermore, for
appropriate values of the groove depth and local anchoring
strengths one can also observe a first-order transition be-
tween the homeotropic and planar textures. It is worthwhile
to emphasize that the combination of chemical and geometri-
cal surface pattern reduces the groove depth above which
this transition occurs as compared to a pure geometrically
patterned surface.

�2� For the NLC confined between a chemically patterned
sinusoidal grating and a flat substrate which induces strong
homeotropic anchoring, we have determined a first-order
phase transition between a homeotropic texture and a hybrid
aligned nematic texture for rather shallow grooves �Fig. 6�.
In the homeotropic texture, the nematic director is almost
uniform and perpendicular to the flat surface, while the di-
rector field varies from homeotropic to nearly planar orien-
tation in the hybrid aligned nematic texture �Fig. 7�. Building

on the results shown in Figs. 6 and 7 it seems possible to
achieve a zenithally bistable nematic device without the use
of a deep surface grating.

It is worthwhile to emphasize that not any combination of
the chemical pattern and surface grating is capable of induc-
ing first-order transitions between the homeotropic and tilted
textures or the homeotropic and planar textures in a semi-
infinite NLC system. For instance, if the periods of the
chemical pattern � and of the surface grating p are the same
then the surface roughness merely changes the location of
the second-order transitions observed in the flat substrate
case, at least in the range of the groove depth studied in this
work. Moreover, our numerical calculations suggest that the
optimum ratio p /� for the occurrence of the first-order tran-
sitions in the case of relatively shallow grooves is p /�=2
shown in Fig. 1.

Finally, it is instructive to consider the situation when the
chemical surface pattern is not exactly in phase with the
surface grating profile. In such a case, for the reasons men-
tioned in Sec. II A, there are no true homeotropic and planar
textures, hence the accompanied second-order phase transi-
tions cease to exist. However, first-order transitions between
a pseudohomeotropic texture and the tilted or hybrid aligned
texture should still exist, where the term pseudohomeotropic
means that the texture is characterized by �a

�ef f�
0. Note also
that the tricritical point in the phase diagrams shown in Figs.
3–6 becomes a critical point at which the difference between
the pseudohomeotropic and tilted or hybrid aligned textures
disappears.
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